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rates ranging from 16 ft/day down to 0.16 ft/day. 
It should be pointed out that there is no unanimous 
agreement on the lower limit of flow where diffusion 
may be neglected. For example, in the range between 
0.1 to 0.5 ft/day, the diametrically opposed con­
clusion, namely, that molecular diffusion is the 
dominant factor, has also been reached. IS Experi­
mental investigations in this area continue to be 
made. 

Where molecular diffusion is negligible the 
present theory predicts, as may be seen by com­
paring Eqs. (6.8) and (6.9), that the "effective 
diffusion constant" 5) is approximately proportional 
to the rate of flow. Experimental evidence confirms 
this rather we11. 1s

•
20 In the extreme case of no 

18 R. J. Blackwell, J. R. Rayne, a.nd W. M. Terry, J. 
Petrol. Technol., XI, 1 (January, 1959). 

19 H. C. Thomas, J. Am. Chem. Soc. 66, 1664 (194-1), 
and Ann. N. Y. Acad. Sci. 49, 161 (1948). 

20 G. Polya, ZlIr Kinematik der Geschiebebewegung (i\Iittei­
lung der Versuchsanstalt fUr Wasserbau an der Eidg. Techn. 
Hochschule, Zurich, S\\'itzerland, 1937). 

macroscopic flo\", our equations break dOwn. 
However, even at the very small flow rates where 
molecular diffusion is predominant, they still may 
be used to describe the observed effects if a proper 
value of D is selected, so as to make Eqs. (6.8) and 
(6.9) identical. From the phenomenological point of 
vie,,', the general equation [Eq. (3.2)1 offers greater 
flexibility than the conventional diffusion equation, 
through the choice of two adjustable parameter.' . 

d. A similar theory also may be applied to other 
displacement processes such as the replacing of one 
kind of ion by another in ian-exchange columns. 
This was done by Thomas,19 in dealing with the 
kinetics of ion exchange and chromatography, ant! 
by Polya20 to treat the analogous problem of gl'[wcl 
transport by ri,-ers. 
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Shock Hugoniots for Liquid Argon 

W. FICKE'!''!' AND W. 'Yo "-OOD 

Los Alamos Scientific Laboratory, University of California, Los .'llamos, New lIIexico 
(Revised September 28, 1959) 

Shock Hugoniots for liquid argon are calculated using equations-of-state obtained from the :\Ionte 
Carlo method and the Lennard-Jones-Devonshire cell theory, using an experimentally determined 
pair potential. Agreement with presently available experimental data i8 poor. 

1. INTRODUCTION 

MANY statistical mechanical theories of the 
equation of state of dense molecular systems 

make use of the assllmption of additivity of inter­
molecular forces, which state3 that the total inter­
action energy can be expressed as a sum of terms 
referring to the interactions of isolated pairs of 
molecules. It is known that this assumption is not 
exactly correct, and the degree of its validity has 
been the subject of considerable investigation. I 
However, there is very little, if any, experimental 
information pertaining to the repulsive region of 
the pair potential of intermolecular force. 

1 L. Jansen, Some Aspects of :lIfolecular Interactions in 
Dense Media (Martinus Nijhoff, The Hague, Netherlands, 
1955). 

The additi"ity assumption can of course be tested 
by comparing ,,,ith experiment the results of stati~­
tical calculations based on experimentally de­
termined pair potentials. From the theoretical 
standpoint, this approach has been hindered by the 
lack of accurate data on the repulsive portion of the 
pair potential, and of an accurate and tractable 
statistical theory. These difficulties have bee II 
partly overcome in recent years. The molecular 
scattering method for the determination of puir 
potentials has been extended out to distances ne!!r 
the crossover,2 and the Monte Carlo method of 
calculation3 is free of the major uncertainties ill 

2 1. Amdur and E. A. Mason, J. Chem. Phys. 22, li7(l 
(1954); Phys. Fluids I, 370 (1958). 

3 W. W. Wood and F. R. Parker, J. Chcm. Phys. 27, 
720 (1957) (further results are to be published ). 
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the usual statistical theories of the equation of state. 
On the experimental side, the high compressions 
required can be reached by means of shock waves 
generated by condensed explosives. Pressure and 
\·olume can be obtained from measurements of 
shock and particle velocity,· or by x-ray densi­
tometry.6 Since the compression takes place along 
!l Hugoniot curve, however, a considerable rise in 
temperature is unavoidable. 

Liquid argon would appear to be the material of 
choice. The pair potental is spherically symmetric, 
and its repulsive portion has been experimentally 
determined in the appopriate range of distances. 2 

~ronte Carlo equation-of-state calculations3 have 
been done for a form of the pair potential and a range 
of reduced temperatures and volumes which · are 
appropriate, and some points on the shock Hugoniot 
have been measured. 5 

Accordingly, the calculations presented here are 
for the shock Hugoniot of liquid argon. They are 
based on the experimentally determined repulsive 
portion of the pair potential and the Monte Carlo 
calculation of the equation of state. Since the ~Ionte 
Carlo calculations are expensive in computer time, 
and were done with a somewhat different pair 
potential, the Lennard-Jones-Devonshire (LJD) 
cell model equation-of-state6 is used as a substitute 
for the Monte Carlo method in order to calculate 
the Hugoniot with the experimental pair potential. 
The Hugoniots calculated from the LJD and ~Ionte 
Carlo equations of state with the same pair potential 
agree surprisingly well, and thus afford some 
confidence in this procedure. 

2. COMPARISON OF MONTE CARLO AND 
LENN ARD-JONES-DEVONSHIRE 

EQUATIONS OF STATE 

The model used is a system of argon atoms 111 the 
ground state. As discussed above, the addith-ity of 
pair forces is assumed throughout. 

The shock Hugoniot curve is the solution of the 
equation7 

E - Eo - !P(Vo - v) = O . 

E = fR(T - To) + E' , 

(2.Ia) 

(2.Ib) 

• M. H. Rice, R. G. McQueen, and J . ~I. Walsh, Solid 
Siale Physics, edited by F. Seitz and D. Turnbull (Academic 
Press Inc., New York, 1958), Vol. 6. 

5 J. Dapoigny, J. Kieffer, and B. Vodar, J. Phys. radium 
8, 733 (1955). 

S L. E. Lennard-Jones and A. F. Devonshire, Proc. Roy. 
Soc. (London) A163, 53 (1937) . 

7 See, for example, R. Cournat and K. O. Friedrichs, 
Supersonic Flow and Shock Waves (Interscience Publishers, 
Inc., New York, 1948). p. 121 fI. 
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FIG. 1. Isotherms for the ~Ionte Carlo (points and dashed 
curves) and LID (solid curves) equations of state. Excess 
quantities over those for the regular (face-centered cubic) 
lattice configuration are shown (see text). The chain curves 
show the approximate position of the shock Hugoniot. 

where P, V, and E are· the pressure, molar volume, 
and molar internal energy, respectively, alld the 
subscript 0 denotes the initial state, which is taken 
to be liquid argon at its boiling point:8 Po = 1 atm; 
Vo = 28.7 cm3/mole; To = 87.29 OK; and EoiRTo = 
- 7.982, where the reference state for the energy is 
gaseous argon in the ideal gas state at To. (We have 
taken Eo/RTo = llH./RTo - 1, with llH. the 
experimental enthalpy of vaporization at To.) The 
imperfection energy E' is calculated from the LJD 
cell theory or the Monte Carlo method. 

The Monte Carlo technique has been llsed to 
generate points on four isotherms,3 using the 
Lennard-Jones 6-12 form for the pair potential; 

u(r) = E*[(r/r*)-12 - 2(r/r*)-6], (2.2) 

where r* and E* are the radius and well depth of the 

8 F. Din, Thermodynamic Functions of Gases (Butter­
worths Scientific Publications Ltd., London, 1956), Vol. 2, 
p. 181. 
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potential, and u(r) is the potential at the separation 
r. The isotherms are shown i"n Figs. lea) and l(b). 
In order to obtain a convenient scale, the values of 
E'/RT and PV/RT - 1 for the regular (face­
centered cubic) lattice configuration have been 
subtracted off. For this form of the pair potential, 
these are given by9 

E'/RT 

= 6[1.0110(r/ r*)-12 - 2.4090(r/ r*)-6] 

PV/R'l' - 1 

= 24[1.0110(r/r*)-12 - 1.2045(r/1'*)-6]. 

(2.3) 

The calculation of points on the Hugoniot curve 
from these results was done by interpolation in 
temperature at constant volume and vice versa. 
In the constant-yolume method, the Hugoniot 
function, the left-hand side of Eq. (2.la), was 
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FIG. 2. Shock Hugoniots for liquid argon calculated with 
Monte Carlo (MC) and LJD equations of state using the 
same pair potential [Eqs. (2.2) and (2.4)]. The pressure 
colume plane is shown in (a), and the pressure-temperature 
plane in (b). Also shown in (b) are some experimental points 
on the fluid-solid coexistence curve and its extrapolation 
by means of the empirical Simon relation. 

9 J. E. Jones and A. E . Ingham, Proc. Roy. Soc. (London) 
Al07, 636 (1925). 

TABLE 1. Shock Hugoniots calculated from the l\Ionte Carlo 
equation-of-state [with Lennard-Jones potential, Eq. (2.4)]. 

P(kb ) VIVo T(OK) 

362 0.535 11 900 
305 0.547 9 360 
168 0 .572 4 330 
123 0.595 3 120 
96 0 .606 2 390 
59 0.631 1 401 
30 0.673 760 
23 0 .687 569 

calculated for each reduced temperature at the given 
volume. Three-point interpolation was then used 
to find the temperature at which Eq. (2.1a) was 
satisfied, and the remaining equation-of-state quan­
tities were also obtained by interpolation. 

Interpolation in volume at constant temperature 
was complicated by the shape of the isotherms. The 
probable first-order phase transition, discussed in 
reference 3 for the isotherm with kT / e* = 2.74, 
appears to be present on the higher isotherms also. 
Because of the small number of points on these 
isotherms, the dashed curves shown in Figs. lea) 
and 1 (b) were sketched in, using only a discon­
tinuity in slope to represent the probable transition. 
A Hugoniot point on each isotherm was then 
obtained by interpolation at constant temperature. 
(On the lowest isotherm, the Monte Carlo points 
were used directly with three-point interpolation.) 
As a check on these methods, a Hugoniot point was 
calculated by the first method. from the LJD 
isotherms of Fig. 1 and found to be in good agreement 
with an explicit calculation. 

In order to transform from reduced thermo­
dynamic variables to real ones, a set of pair potential 
parameters close to those obtained from second­
virial coefficient data were used 10: 

e*/k = 119.3 oK, r* = 3.833 A, (2.4) 

where k is Boltzmann's constant. 
The resulting Hugoniot curve is given in Table I 

and in Figs. 2(a) and 2(b). Also shown in Fig. 2(b) 
is the extrapolation of the experimental solid­
liquid coexistence curve by means of the empirical 
Simon relation. II From this graph it appears that 
the Hugoniot lies entirely in the fluid region. To 
shed further light on this point, the loci of Hugoniot 
p'oints were added to Figs. lea) and l(b). Although 
the position of the probable transition is poorly 

10 E. Whalley and W. G. Schneider, J. Chcm. Phys. 23, 
1644 (1955). 

\I D. W. Robinson, Proc. Roy. Soc. (London) A225, 39:3 
(1954). 
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,ktermined by the Monte Carlo results, it appears 
that the lower portion of the Hugoniot curve may 
lie in the solid region. As pointed out in reference 3, 
the apparent coexistence point on the lowest­
tcmperature l\fonte Carlo isotherm is at a lower 
pressure than that predicted by the extrapolation 
of the experimental results. Thus the coexistence 
('urve predicted by the l\Ionte Carlo results probably 
lics somewhat to the right of the dashed curve of 
Fig. 2(b) and intersects the lower portion of the 
lIugoniot curve. 

T .\BI.E II. Shock Hugoniots calculated with the LJD equation 
Of state. 

Lennard-Jones 
potential 

lEq. (2.4)J 
I'(kb) V /Vo T(OK) 

600 0.5137 21 230 
500 0.5205 17 210 
~UO 0.5292 13 310 
;\00 0.5400 9 555 
2;30 0 .5487 7 743 
200 0 . 5587 5 988 
I.jO 0.5722 4 306 
100 0.5927 2 720 
75 0.608.3 1 976 
50 0.6322 1 280 
25 0.6778 652.5 
20 0.6938 538.7 
15 0.7151 430 .0 
10 0.7462 327.0 
5 0.8003 229.4 

Exp-six potential Exp-six potential 
lEq. (3.1)J lEq. (3.2)] 

VIVo T(OK) VIVo T(OK) 

0.-1698 20 900 
0.4791 16 920 
0.4907 13 053 
0.5062 9 335 
0.510-1: 7 547 
0.5292 5 819 
0.5464 4 167 
0.5720 2 616 
0 .5912 1 893 
0.6199 1 221 
0 .6730 620.2 
0 .6911 512 .6 
0 .7150 410.3 
0.7494 314.2 
0 .8082 223.8 

0 .4121 22 863 
0.4228 18 420 
0.4359 14 195 
0.4528 10 177 
0.4638 8 244 
0.4775 6 370 
0.4957 4 570 
0.5228 2 872 
0.5430 2 077 
0.5732 1 33-1 
0 .G291 668.6 
0.6-182 5-18.9 
0.6734 435.4 
0.7096 328.8 
0.7716 229.-1 

The same sct of isotherms and the shock Hugoniot 
were also calculated from the LJD cell theory.6 
These calculations were done on the IK\I 704. The 
Hugoniot curve was obtained by the iterative 
.olution of Eq. (2.1), with the equation-of-state 
points calculated as needed. The results are given 
in Table II and are compared with the Monte 
CurIo results in Figs. 1 and 2. . 

Although the isotherms do not agree too well, 
particularly on the fluid side of the phase transition 
(which ~s of course not predicted by the cell theory), 
the two Hugoniot curves are quite close. Of course 
the isotherms shown give only the difference between 
the E or PV and the contributions of the regular 
lattice configuration, which is the same in both 
ralculations. Examination of the results, shows, 
however, that the lattice values are less than half of 
the total above about 50 kb on the Hugoniot, so 
that the fact that the lattice contributions are the 
~ame cannot alone account for the agreement. It 
appears that the agreement is due mainly to the 
('ancellation of the differences in PV and E when 
they are subtracted in the Hugoniot equation, plus 

: 

FIG. 3. Intermolecular potentials used in the calculations. 
(lA) Lennard-Jones 6-12, constants from second virial coeffi­
cient data [Eq. (2.4)J .* /k = 119.3 °I(, 1'* = 3.833. (18) Exp-six, 
constants from second vidal coefficient and crystal data 
lEq. (3.1)J a = 14, .* /k = 123.2 OK, T* = 3.866 A. 2. Exp-six, 
constants from molecular scattering data for 2.2 A < r < 3,4 A 
[Eq. (3.2)J a = 12, .*/k = 116, T* = 3.87A. The range of 
distances covered by the scattering data is indicated by the 
vertical bars. To the right of the minimum, the attractive 
portion, not shown, lies between Clll'ves 1A and lB. 
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FIG. 4. Shock Hugoniots for liquid argon calculated with 
different pair potentials: Curves lA, lB, and 2 correspond 
to the potentials of Fig. 3. Curves 3 and 4 illustrate the 
effect of varying the potential parameters: 3. a = 12, .* /k = 
123.2, r* = 3.866. -1. a = 14, .* / k = 123.2, r* = 4.18 A. 
Curve 4 also illustrates the change in r* requil'ed to reproduce 
the available experimental data.. 

the fact that a part of the Hugoniot curve corre­
sponds to a region in which the LJD and Monte 
Carlo isotherms are crossing. 

3. EFFECT OF THE PAIR POTENTIAL 

In addition to the Lennard-Jones form of the pair 
potential used above, the exp-six form has also been 
fit to second vidal coefficient and crystal data, with 
the result l2 

( ) E* [6 «(1-r/r') (r )-6J ur = -e - -
1 - 6/ a. a. r* 

(3.1a) 

----
12 E. W. Mason and W. E. Rice, J. Chem. Phys. 22, 8-13 

(1954). 
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a = 14, E*/k = 123.2 °K,r* = 3.866 A. (3.1b) 

The repulsive portions of these two potentials 
(Lennard-Jones and exp-six) differ somewhat, but 
are both much "harder" than the molecular scatter­
ing results of Mason and Amdur,2 who have found 
that the exp-six form with 

a = 12, E*/ k = 116 OK, r* = 3.87 A, (3.2) 

reproduces the molecular scattering data quite well 
and has an attractive portion quite close to that of 
Eq. (3.1). This potential is undoubtedly the most 
nearly correct one for the present calculations, 111 

which the repulsive portion dominates. 
Therefore, we have used the LJD equation of 

state to calculate the shock Hugoniot of liquid 
argon using this potential as well as those determined 
from second virial coefficient data, Eqs. (3.1) and 
(2.2), (2.4). These pair potentials are shown in Fig. 
3, and the corresponding shock Hugoniots are given 
in Table II and Fig. 4. 

In order to illustrate the effects of changing the 
adjusLable parameters in the potential function, the 
dashed curves of Fig. 4 were calculated. The effect 
of changing a only, in Eq. (3.1a) can be seen by 
comparing curves IB and 3; of changing E* only, 
by comparing 2 and 3; and of changing r* only, by 
comparing IB and 4. Curve 4 is also used for another 
purpose below. 

In all of the calculated Hugoniots except that 
shown in Fig. 2, only a single shell of neighbors was 
included in the calculation of the cell partition 
function. In calculating the lattice energy, all shells 
of neighbors were included for the Lennard-Jones 
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FIG. 5. Normalized weighting functions and integrands 

for the LJD cell integrals transformed to the form of integrals 
over the intermolecular separation r. Upper curves: for 

. P ~ lOOkb on the shock Hugoniot 2 of Fig. 4; lower curves: 
for P ~ 500kb on the same shock Hugoniot. Here G is the 
we.ightin~ function, P is the integrand for (PV / R1' - I) and 
E IS the mtegrand for E' /RT. 

potential, but for the exp-sLx potential only UII! ' 

shell was included in the repulsive term. This I\' ~~, 

done partly for simplicity, since for an exponenl i ~ l. 

repulsion the ratio of the entire lattice energy I ., 

the single-shell energy is a fairly strongly increa8 i ll~ 
function of density. Also, it seems likely that ti ll 
inclusion of all shells in the calculation. of the re­
pulsive energy would probably give too large a result 
at high densities, since the exponential term remaili' 
relatively large at intermediate distances. * 

4. DISCUSSION 

In order to show the relative importance ui 
different intermolecular distances in the~e calCll­
lations, we have obtained in the appendLx a weigh t· 
ing function which gives t.he relative weight with 
which each intermolecular distance occurs ill the 
cell integrals of the LJD equation of state. Tbi .. 
weighting function is given in Eq. (AI2), and CUIi 

be regarded as a pseudo radial distribution functioll 
in the sense that it gives the LJD equation of stut!: 
when it is used in place of the radial distributiuli 
function g(r) in the general statistical mechanical 
expressions for pressure and excess internal energy 

E' 2-trN 1'" 2 RT = VkT u(r)g(l')l' dr 
o . 

(4. 1) 

PV 271N 1 1'" du(r) 3 
RT - 1 = -VkT3 0 dr g(r)r dr . 

The weighting function consists of the sum of a 
continuous function and a Dirac delta-function. Thr 
continuous portion of the normalized weightin~ 

function and the corresponding integrands of Eq" 
(4.1) are plotted in Fig. 5 for values of T and r 
corresponding to pressures of about 100 and 500 kh 
on curve 2 of Fig. 4. The delta-function (not shown' 
lies at the maximum of the weighting function, and 
has the opposite sign and an area equal to half that 
under the weighting function curve. As expectcd. 
the repulsive portion of the potential is the determin' 
ing factor, and the range of distances of greatc:,t 
importance coincides roughly with the range of till' 
molecular scattering results shown in Fig. 3. 

The available experimental measurements of the 
shock HugoniotS consist of x-ray densitometry 
meaSUl'ements of the density behind the shock wa\'P. 

• In order to obtain some idea of the effect of omittin~ 
the second and third shells of neighbors in calculating tI l" 
cell integrals, the Hugoniot curve of Fig. 2 was also calculldr,1 
in this way. The resulting curve lYas displaced slightly to! 
the right-by about 0.01 in V o/ V. 

The effect of omitting the additional shells of neighbor~ in 
calculating the la ttice contribution for the repulsive term III 

the exp-six potential is somewhat smaller than this. 
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!1 g(r)r3 dr. 

of the sum of 3 

~lta-function. The 
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Itegrands of Eq.-. 
lues of T and r I 

t 100 and 500 kl , 
tion (not shown) 

ing function, and 
~qual to half that 
ve. As expected. 
I is the determin-

:llld extend to about 70 kb. They are compared with 
the calculated curves in Fig. 4. In order to see what 
rhanges in the potential would have to be made to 
gire a calculated curve through these points, we 
took as a starting point the second-virial-coefficient 
l'xp-six potential, Eq. (3.1). An increase of r* to 
118 A at constant a and E* /k was required to 
ma tch the e.xperimental data; these values gave 
rllf\"e 4 of Fig. 3. An increase of E* /k to 240 oK at 
('onstant a and r* gave a calculated curve which 
would be nearly indistinguishable from curve 4 if 
plotted in Fig. 3. It seems unlikely that the assump­
tion of additivity of pair forces could fail so badly at 
thcse low pressures as to require such a major 
adjustment of the pair potential in order to match 
the experimental data. For this reason, and because 
data at higher pressmes would be of considerable 
interest, similar experiments carried to higher 
prcssures would be desirable. 
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APPENDIX 

In working with an equation of state based on a 
pair potential u(r), it is desirable to have the energy 
expressed in the form 

E = i'" u(r)h(r) dr, (AI) 

. 0 that the function her) gives immediately the 
relative importance of different intermolecular 
distances. 

The cell integrals of the LJD equation of state 
tan be transformed into this form. The expressions 
for internal energy and pressure can be written (for 
nearest-neighbor interactions) 

IT - RT = -N[!Ztf'(t) - gCttw,) / g(l)] (A2a) 

E' = N[!Zf(t) = g(w)/g(l)], (A2b) 

where Z is the coordination number, t = a/ r* with 
'I the nearest-neighbor distance, the prime denotes 

ances of greate,;t 
the range of thr 
in Fig. 3. 

surements of the 
ay densitometry 

the shock wavp. 

e effect of omittin): 
s in calculating tho' 
2 was also calcubt('tl 
lisplaced slightly to 

• dlfferentiatiol1, and the subscript t denotes partial 
differentiation with respect to t. The pair potential 
has been written with a reduced argument: f(r / r*) = 
lI(r). The cell potential w is defined by 

lhells of neighbors i ~ 
he repulsive term 01 

. than this. 

Z fl+% 
w(x, t) = 2x l-z x'[f(tx') - f(t)] dx', 

Ilnd the g function by the cell integral 

(A3) 

() 21b[]2-.,(%,<),kTd g z = z x e x, 
o 

(A4) 

where b is the cell radius in units of a. 
By defining \0 (x, t) = exp [- w(x, t) / kT], and 

making use of Eq. (A3), the cell integral for the 
energy becomes 

t fl+% 
g(w) = Z Jo dx 1-% dx'x\O(x, t)x'(f(tx') - f(t)]. (A5) 

Reversal of the order of integration gives 

g(w) = Z f1+b dx' fb dx x'[f(tx') 
J-b 11-%' I 

- f( t) ]x",(x, t), (A6) 
or 

g(w) = Z{f~:b f(tx')G(x', t) dx' 

- f(t)' f~:b G(x', t) dX'} , (A7) 

where 

G(x', t) = x' fb x\O(x, t) ax. (AS) 
11-%' 1 

It is easy to show that 

f l +b G(x', t) dx' = g(l), (A9) 
I-b 

and we thus obtain from Eq. (A2b) 

E' = NZ[ _f(t) + fl+b f(tx') G(x', t) dX'] - (AlO) 
2 H g(1) 

The corresponding expression for the pressme is 
obtained in similar fashion, 

PV - RT = -NZ[ !t!'(t) 

_ f1+b ltx'f'(tx') G(x' , t) dX'], (All) 
j-b g(l) 

It is convenient to express the desired weighting 
function in a form analogous to the radial distri­
bution function: 

her) _ Z [G(X" t) 
- 21rV2x,2 g(l) 

- ! o(x' - 1) ] ; x' = r/ a (A12) 

with G(x', t) = 0 for x' < 1 - b and x' > 1 + b, 
and 0 the Dirac o-fullction. If her) is used instead of 
g(r) in the usual statistical mechanical expressions 
for the energy and pressure, Eqs. (4. L), the results 
are just the LJD expressions for pressure and energy, 
Eqs. (A2) . 
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