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rates ranging from 16 ft/day down to 0.16 ft/day.
It should be pointed out that there is no unanimous
agreement on the lower limit of flow where diffusion
may be neglected. For example, in the range between
0.1 to 0.5 ft/day, the diametrically opposed con-
clusion, namely, that molecular diffusion is the
dominant factor, has also been reached.'® Experi-
mental investigations in this area continue to be
made.

Where molecular diffusion is negligible the
present theory predicts, as may be seen by com-
paring Eqs. (6.8) and (6.9), that the “effective
diffusion constant” D is approximately proportional
to the rate of flow. Experimental evidence confirms
this rather well.'®'*® In the extreme case of no

18 R. J. Blackwell, J. R. Rayne, and W. M. Terry, J.
Petrol. Technol., XI, 1 (January, 1959).

19H. C. Thomas, J. Am. éhem. Soc. 66, 1664 (1944),
and Ann. N. Y. Acad. Sci. 49, 161 (1948).

20 G. Polya, Zur Kinematik der Geschiebebewegung (Mittei-
lung der Versuchsanstalt fiir Wasserbau an der Eidg. Techn.
Hochschule, Ziirich, Switzerland, 1937).

macroscopic flow, our equations break dowy,
However, even at the very small flow rates where
molecular diffusion is predominant, they still may
be used to describe the observed effects if a proper
value of D is selected, so as to make Eqs. (6.8) and
(6.9) identical. From the phenomenological point, of
view, the general equation [Eq. (3.2)] offers greater
flexibility than the conventional diffusion equation,
through the choice of two adjustable parameters,

d. A similar theory also may be applied to other
displacement processes such as the replacing of one
kind of ion by another in ion-exchange columns.
This was done by Thomas,' in dealing with the
kinetics of ion exchange and chromatography, and
by Polya®® to treat the analogous problem of gravel
transport by rivers.
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Shock Hugoniots for liquid argon are calculated using equations-of-state obtained from the Monte
Carlo method and the Lennard-Jones-Devonshire cell theory, using an experimentally determined
pair potential. Agreement with presently available experimental data is poor.

1. INTRODUCTION

ANY statistical mechanical theories of the

equation of state of dense molecular systems
make use of the assumption of additivity of inter-
molecular forces, which states that the total inter-
action energy can be expressed as a sum of terms
referring to the interactions of isolated pairs of
molecules. It is known that this assumption is not
exactly correct, and the degree of its validity has
been the subject of considerable investigation.'
However, there is very little, if any, experimental
information pertaining to the repulsive region of
the pair potential of intermolecular force.

1 L. Jansen, Some Aspects of Molecular Interactions in
{)gesm_s)e Media (Martinus Nijhoff, The Hague, Netherlands,
3).

The additivity assumption can of course be tested
by comparing with experiment the results of statis-
tical calculations based on experimentally de-
termined pair potentials. From the theoretical
standpoint, this approach has been hindered by the
lack of accurate data on the repulsive portion of the
pair potential, and of an accurate and tractable
statistical theory. These difficulties have been
partly overcome in recent years. The molecular
scattering method for the determination of pair
potentials has been extended out to distances near
the crossover,” and the Monte Carlo method of
calculation® is free of the major uncertainties in

2. Amdur and E. A. Mason, J. Chem. Phys. 22, 670
(1954); Phys. Fluids 1, 370 (1958).

3W. W. Wood and F. R. Parker, J. Chem. Phys. 27,
720 (1957) (further results are to be published).
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On the experimental side, the high compressions
required can be reached by means of shock waves
generated by condensed explosives. Pressure and
volume can be obtained from measurements of
shock and particle velocity, or by x-ray densi-
tometry.® Since the compression takes place along
a Hugoniot curve, however, a considerable rise in
temperature is unavoidable.

Liquid argon would appear to be the material of
choice. The pair potental is spherically symmetrie,
and its repulsive portion has been experimentally
determined in the appopriate range of distances.”
Monte Carlo equation-of-state calculations® have
been done for a form of the pair potential and a range
of reduced temperatures and volumes which are
appropriate, and some points on the shock Hugoniot
have been measured.®

Accordingly, the calculations presented here are
for the shock Hugoniot of liquid argon. They are
based on the experimentally determined repulsive
portion of the pair potential and the Monte Carlo
calculation of the equation of state. Since the Monte
Carlo calculations are expensive in computer time,
and were done with a somewhat different pair
potential, the Lennard-Jones-Devonshire (LJD)
cell model equation-of-state® is used as a substitute
for the Monte Carlo method in order to calculate
the Hugoniot with the experimental pair potential.
The Hugoniots calculated from the LJD and Monte
Carlo equations of state with the same pair potential
agree surprisingly well, and thus afford some
confidence in this procedure.

2. COMPARISON OF MONTE CARLO AND
LENNARD-JONES-DEVONSHIRE
EQUATIONS OF STATE

The model used is a system of argon atoms in the
ground state. As discussed above, the additivity of
pair forces is assumed throughout.

The shock Hugoniot curve is the solution of the
equation” :

E—E,—3P(Vo— V) =0
E=3RT-T,)+E,

(2.1a)
(2.1b)

‘M. H. Rice, R. G. McQueen, and J. M. Walsh, Solid
S)Iale Physics, edited by F. Seitz and D. Turnbull (Academic
Press Inc., New York, 1958), Vol. 6.

5 J. Dapoigny, J. Kieffer, and B. Vodar, J. Phys. radium
8, 733 (1955).

¢ L. E. Lennard-Jones and A. F. Devonshire, Proc. Roy.
Soc. (London) A163, 53 (1937).

. "See, for example, R. Cournat and K. O. Friedrichs,
Supersonic Flow and Shock Waves (Interscience Publishers,
ne., New York, 1948). p. 121 ff.
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Fic. 1. Isotherms for the Monte Carlo (points and dashed
curves) and LJD (solid curves) equations of state. Excess
quantities over those for the regular (face-centered cubic)
lattice configuration are shown gsee text). The chain curves
show the approximate position of the shock Hugoniot.

where P, V, and E are the pressure, molar volume,
and molar internal energy, respectively, and the
subscript o denotes the initial state, which is taken
to be liquid argon at its boiling point:®* P, = 1 atm;
Vo = 28.7 cm®/mole; T, = 87.29 °K; and E,/RT, =
— 7.982, where the reference state for the energy is
gaseous argon in the ideal gas state at T,. (We have
taken E,/RT, = AH,/RT, — 1, with AH, the
experimental enthalpy of vaporization at T,.) The
imperfection energy E’ is calculated from the LJD
cell theory or the Monte Carlo method.

The Monte Carlo technique has been used to
generate points on four isotherms,® using the
Lennard-Jones 6-12 form for the pair potential;

ur) = [r/r*)™" — 200/, (2.2)
where r* and ¢* are the radius and well depth of the

8 F. Din, Thermodynamic Functions of Gases (Butter-
worths Scientific Publications Ltd., London, 1956), Vol. 2,
p. 181.
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potential, and u(r) is the potential at the separation
r. The isotherms are shown in Figs. 1(a) and 1(b).
In order to obtain a convenient scale, the values of
E’'/RT and PV/RT — 1 for the regular (face-
centered cubic) lattice configuration have been
subtracted off. For this form of the pair potential,
these are given by’

E'/RT
= 6[1.0110(/r%)™ — 2.4090(r/r*)""]
PV/RT — 1
= 24[1.0110(r/r*)""* — 1.2045(r/r*)~°].

The calculation of points on the Hugoniot curve
from these results was done by interpolation in
temperature at constant volume and vice versa.
In the constant-volume method, the Hugoniot
function, the left-hand side of Eq. (2.1a), was

(2.3

800
600

. MC
-— LJD

P (kb)

2 . MC
7 -— L0
~&= COEXISTENCE CURVE

(b)

F16. 2. Shock Hugoniots for liquid argon calculated with
Monte Carlo (MC) and LJD equations of state using the
same pair potential [Eqs. (2.2) and (2.4)]. The pressure
colume plane is shown in (a), and the pressure-temperature
plane in éb). Also shown in (b) are some experimental points
on the fluid-solid coexistence curve and its extrapolation
by means of the empirical Simon relation.

9 J. E. Jones and A. E. Ingham, Proc. Roy. Soc. (London)
A107, 636 (1925).
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Tasre I. Shock Hugoniots calculated from the Monte Carlo

equation-of-state [with Lennard-Jones potential, Eq. (2.4)].

P(kb) V/Ve T(°K)
362 0.535 11 900
305 0.547 9 360
168 0.572 4 330
123 0.595 3 120

96 0.606 2 390
59 0.631 1 401
30 0.673 760
23 0.687 569

calculated for each reduced temperature at the given
volume. Three-point interpolation was then used
to find the temperature at which Eq. (2.1a) was
satisfied, and the remaining equation-of-state quan-
tities were also obtained by interpolation.
Interpolation in volume at constant temperature
was complicated by the shape of the isotherms. The
probable first-order phase transition, discussed in
reference 3 for the isotherm with k7/e* = 2.74,
appears to be present on the higher isotherms also.
Because of the small number of points on these
isotherms, the dashed curves shown in Figs. 1(a)
and 1(b) were sketched in, using only a discon-
tinuity in slope to represent the probable transition.
A Hugoniot point on each isotherm was then

_ obtained by interpolation at constant temperature.

(On the lowest isotherm, the Monte Carlo points
were used directly with three-point interpolation.)
As a check on these methods, a Hugoniot point was
calculated by the first method from the LJD
isotherms of Fig. 1 and found to be in good agreement
with an explicit calculation.

In order to transform from reduced thermo-
dynamic variables to real ones, a set of pair potential
parameters close to those obtained from second-
virial coefficient data were used'®:

/k = 119.3 °K, r™* = 3.833 A, 2.4)

where & is Boltzmann’s constant. _
The resulting Hugoniot curve is given in Table I
and in Figs. 2(a) and 2(b). Also shown in Fig. 2(b)
is the extrapolation of the experimental solid-
liquid coexistence curve by means of the empirical
Simon relation.'" From this graph it appears that
the Hugoniot lies entirely in the fluid region. To
shed further light on this point, the loci of Hugoniot
points were added to Figs. 1(a) and 1(b). Although
the position of the probable transition is poorly

10 E, Whalley and W. G. Schneider, J. Chem. Phys. 23,
1644 (1955).

1t D. W. Robinson, Proc. Roy. Soc. (London) A225, 393
(1954).
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Jetermined by the Monte Carlo results, it appears
that the lower portion of the Hugoniot curve may
lic in the solid region. As pointed out in reference 3,
he apparent coexistence point on the lowest-
temperature Monte Carlo isotherm is at a lower
pressure than that predicted by the extrapolation
of the experimental results. Thus the coexistence
curve predicted by the Monte Carlo results probably
lies somewhat to the right of the dashed curve of
Fig. 2(b) and intersects the lower portion of the
Hugoniot curve.

Tasie I1. Shock Hugoniots calculated with the LJD equation
of state.

Lennard-Jones

otential Exp-six potential Exp-six potential
[Eq. (2.4)] (Eq. (3.1)] (Eq. (3.2)]
Pkb)V/Ve T(°K) V/Vo T(C°K) V/Vo T(°K)
600 0.5137 21 230 0.4698 20 900 0.4121 22 863

0.4791 16 920
0.4907 13 053

0.4228 18 420
0.4359 14 195

500 0.5205 17 210
400 0.5292 13 310

300 0.5409 9 555  0.5062 9 335 0.4528 10 177
250 0.5487 7 743 0.5164 7 547 0.4638 8 244
200 0.5587 5 988  0.5292 5 819 0.4775 6 370
150 0.5722 4 306  0.5464 4 167 0.4957 4 570
100 0.5927 2 720 0.5720 2 616 0.5228 2 872
75 0.6083 1976  0.5912 1 893 0.5430 2 077
50 0.6322 1280 0.6199 1 221 0.5732 1 334
25 0.6778 652.5 0.6730 620.2 0.6291 668.6
20 0.6938 538.7 0.6911 512.6 0.6482 548.9
15 0.7151 430.0 0.7150 410.3 0.6734 435.4
10 0.7462 327.0 0.7494 314.2 0.7096 328.8
5 0.8003 229.4 0.8082 223.8 0.7716 229 .4

The same set of isotherms and the shock Hugoniot
were also calculated from the LJD cell theory.®
These calculations were done on the IBM 704. The
Hugoniot curve was obtained by the iterative
solution of Eq. (2.1), with the equation-of-state
points calculated as needed. The results are given
in Table II and are compared with the Monte
Carlo results in Figs. 1 and 2.

Although the isotherms do not agree too well,
particularly on the fluid side of the phase transition
(which is of course not predicted by the cell theory),
the two Hugoniot curves are quite close. Of course
the isotherms shown give only the difference between
the £ or PV and the contributions of the regular
lattice configuration, which is the same in both
calculations. Examination of the results, shows,
however, that the lattice values are less than half of
the total above about 50 kb on the Hugoniot, so
that the fact that the lattice contributions are the
same cannot alone account for the agreement. It
appears that the agreement is due mainly to the
cancellation of the differences in PV and E when
they are subtracted in the Hugoniot equation, plus
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F1c. 3. Intermolecular potentials used in the calculations.
(1A) Lennard-Jones 6-12, constants from second virial coeffi-
cient data [Eq. (2.4)] e*/k=119.3 °K. r* = 3.833. (1B) Exp-six,
constants from second virial coefficient and crystal data
[Eq. (3.1)] a = 14, e*/k = 123.2 °K, r* = 3.866 A. 2. Exp-six,
constants from molecular scattering datafor2.2 A <r <34 A
[Eq. (3.2)] @ = 12, e*/k = 116, r* = 3.87A. The range of
distances covered by the scattering data is indicated by the
vertical bars. To the right of the minimum, the attractive
portion, not shown, lies between curves 1A and 1B.
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F1c. 4. Shock Hugoniots for liquid argon calculated with
different pair potentials: Curves 1A, 1B, and 2 correspond
to the potentials of Fig. 3. Curves 3 and 4 illustrate the
effect of varying the potential parameters: 3. a = 12, ¢*/k =
123.2, r* = 3.866. 4. o= 14, &/k = 123.2, »* = 4.18 A.
Curve 4 also illustrates the change in 7* required to reproduce
the available experimental data.

the fact that a part of the Hugoniot curve corre-
sponds to a region in which the LJD and Monte
Carlo isotherms are crossing.

3. EFFECT OF THE PAIR POTENTIAL

In addition to the Lennard-Jones form of the pair
potential used above, the exp-six form has also been
fit to second virial coefficient and crystal data, with
the result'

ulr) = 1——:6%7; I:g N o, (f;)—o:l (3.1&)'

2 . W. Mason and W. E. Rice, J. Chem. Phys. 22, 843
(1951).




A i e i

i NN A

208 - W. FICKETT AND W.

a=14,¢/k = 123.2°K,r* = 3.866 A.  (3.1b)

The repulsive portions of these two potentials
(Lennard-Jones and exp-six) differ somewhat, but
are both much “harder” than the molecular scatter-
ing results of Mason and Amdur,” who have found
that the exp-six form with

a =12, /k =116 °K, r* = 3.87 A, 3.2

reproduces the molecular scattering data quite well
and has an attractive portion quite close to that of
Eq. (3.1). This potential is undoubtedly the most
nearly correct one for the present calculations, in
which the repulsive portion dominates.

Therefore, we have used the LJD equation of
state to calculate the shock Hugoniot of liquid
argon using this potential as well as those determined
from second virial coefficient data, Eqs. (3.1) and
(2.2), (2.4). These pair potentials are shown in Fig.
3, and the corresponding shock Hugoniots are given
in Table II and Fig. 4.

In order to illustrate the effects of changing the
adjustable parameters in the potential function, the
dashed curves of Fig. 4 were calculated. The effect
of changing « only, in Eq. (3.1a) can be seen by
comparing curves 1B and 3; of changing ¢* only,
by comparing 2 and 3; and of changing r* only, by
comparing 1B and 4. Curve 4 is also used for another
purpose below.

In all of the calculated Hugoniots except that
shown in Fig. 2, only a single shell of neighbors was
included in the calculation of the cell partition
function. In calculating the lattice energy, all shells
of neighbors were included for the Lennard-Jones

T T
10 - -
o8 - —
2300 ¢ ¢
06 .
04 - 4
oL+ B
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- \/
-0.2 - 4
P E300
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€ »
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s . i .
1 3 4
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Fi1g. 5. Normalized weighting functions and integrands
for the LID cell integrals transformed to the form of integrals
over the intermolecular separation r. Upper curves: for
P = 100kb on the shock Hugoniot 2 of Fig. 4; lower curves:

" for P 2~ 500kb on the same shock Hugoniot. Here G is the

weighting function, P is the integrand for (PV/RT — 1) and
E is the integrand for E’/RT.
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potential, but for the exp-six potential only
shell was included in the repulsive term. This y,,.
done partly for simplicity, since for an exponentj,
repulsion the ratio of the entire lattice energy i,
the single-shell energy is a fairly strongly increasi, .
function of density. Also, it seems likely that t},

i

A

inclusion of all shells in the calculation of the . :

pulsive energy would probably give too large a resul;
at high densities, since the exponential term remai,.
relatively large at intermediate distances.*

4. DISCUSSION

In order to show the relative importance of

different intermolecular distances in these calcu-
lations, we have obtained in the appendix a weight-
ing function which gives the relative weight witl
which each intermolecular distance occurs in the
cell integrals of the LJD equation of state. This
weighting function is given in Eq. (A12), and can
be regarded as a pseudo radial distribution function
in the sense that it gives the LJD equation of statc
when it is used in place of the radial distribution
function g(r) in the general statistical mechanical
expressions for pressure and excess internal energy

E’ 2=N

BT = VT j; u@®gr)r® dr
PV _ _2N 1 “ du(r) 4
RT 1< VkT3fo g TEP AP,

The weighting function consists of the sum of a
continuous function and a Dirac delta-function. The
continuous portion of the normalized weighting
function and the corresponding integrands of Eqs.
(4.1) are plotted in Fig. 5 for values of 7" and V
corresponding to pressures of about 100 and 500 kb
on curve 2 of Fig. 4. The delta-function (not shown’
lies at the maximum of the weighting function, and
has the opposite sign and an area equal to half that
under the weighting function curve. As expected.
the repulsive portion of the potential is the determin-
ing factor, and the range of distances of greatest
importance coincides roughly with the range of the
molecular scattering results shown in Fig. 3.

The available experimental measurements of the
shock Hugoniot’® consist of x-ray densitometry
measurements of the density behind the shock wave.

*In order to obtain some idea of the effect of omittin:
the second and third shells of neighbors in calculating th
cell integrals, the Hugoniot curve of Fig. 2 was also calculate

@y

in this way. The resulting curve was displaced slightly t"

the right—by about 0.01 in V,/V. .

The effect of omitting the additional shells of neighbors 1"
caleulating the lattice contribution for the repulsive term ¢
the exp-six potential is somewhat smaller than this.
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and extend to about 70 kb. They are compared with
the calculated curves in Fig. 4. In order to see what
changes in the potential would have to be made to
gsive a calculated curve through these points, we
wok as a starting point the secand-virial-coefficient
exp-six potential, Eq. (3.1). An increase of r* to
118 A at constant o and €*/k was required to
match the experimental data; these values gave
curve 4 of Fig. 3. An increase of ¢*/k to 240 °K at
constant « and r* gave a calculated curve which
would be nearly indistinguishable from curve 4 if
plotted in Fig. 3. It seems unlikely that the assump-
tion of additivity of pair forces could fail so badly at
these low pressures as to require such a major
adjustment of the pair potential in order to match
the experimental data. For this reason, and because
data at higher pressures would be of considerable
interest, similar experiments carried to higher
pressures would be desirable.
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APPENDIX

In working with an equation of state based on a
pair potential u(r), it is desirable to have the energy
expressed in the form

E= f u@)h(r) dr, (A1)
0
so that the function h(r) gives immediately the
relative importance of different intermolecular
distances.

The cell integrals of the LJD equation of state
can be transformed into this form. The expressions
for internal energy and pressure can be written (for
nearest-neighbor interactions)

PV~ RT = —NOZ#(0) — oted/g)]  (A20)
E’ = N[BZf(t) = g()/g(D], (A2D)
where Z is the coordination number, ¢ = a/r* with

" the pearest-neighbor distance, the prime denotes
'liﬂ'erentiation, and the subscript ¢ denotes partial
differentiation with respect to ¢. The pair potential
has been written with a reduced argument: f(r/r*) =
u(r). The cell potential w is defined by

w(z,

=Z [ - f01dr, @)

4nd the g function by the cell integral

IN LIQUID ARGON 209

b
0@ =2 [ Bl Tz, (AY)

where b is the cell radius in units of a.

By defining ¢(z, t) = exp [— w(z, t)/kT], and
making use of Eq. (A3), the cell integral for the
energy becomes

0@ =7 [ da [ detrole, 0 () — 01 (AD

Reversal of the order of integration gives

o) = Z j: ‘_: dx’ f, :. &z 2'[f(tz)

— f(D]xe(z, 1),  (A6)
or '
g = Z{ [t o
— f) f " ew, o d:c’} . (AD)
where
G, 1) = 2’ f zo(z, ) de.  (A8)
I1=-z'1
It is easy to show that
[Tew, ga=om, @9
and we thus obtain from Eq. (A2b)
B = NZI:—f%) % Mf(:x')o—(”"(—l)—ld ] (A10)

The corresponding expression for the pressure is
obtained in similar fashion,

PV — RT = —NZ[%tf’(t)

G, o) :l
dx

g(1)
It is convenient to express the desired weighting
function in a form analogous to the radial distri-
bution function:

Z [G{x’, )
2r V22" g(1)

= 3" — l)];

with G(2’,t) = 0for2’ <1 — band a2’ > 1 + b,
and & the Dirac §-function. If A(r) is used instead of
g(r) in the usual statistical mechanical expressions
for the energy and pressure, Eqs. (4.1), the results
are just the LJD expressions for pressure and energy,
Eqgs. (A2).

- f _b " Yrp() E20 0 (A1)

h(r) =

' =r/a (Al2)
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